

UNIVERSITÄT LEIPZIG

Toolbox CSS

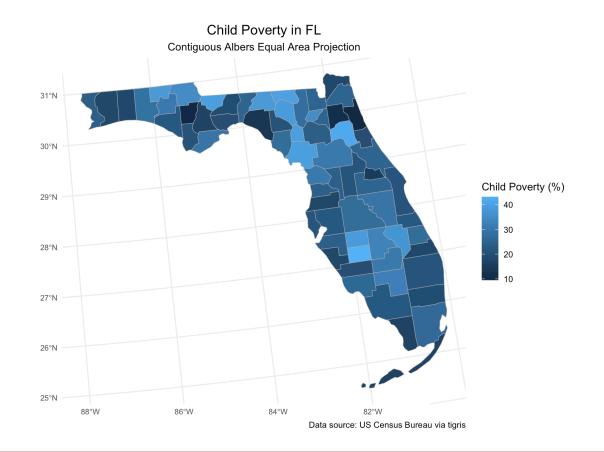
 Spatial Data II; inference with spatial data

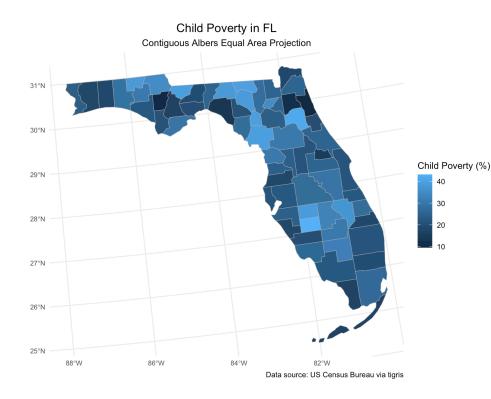
NSG SR 423, 07/01/2025 Felix Lennert, M.Sc.

OUTLINE

- Spatial autocorrelation and how it messes up your regressions
 - Recap: (Local) Moran's I
 - Spillovers
- How to address the problem
 - Lags
 - Errors
- The next weeks

Spatial Data II | Intro





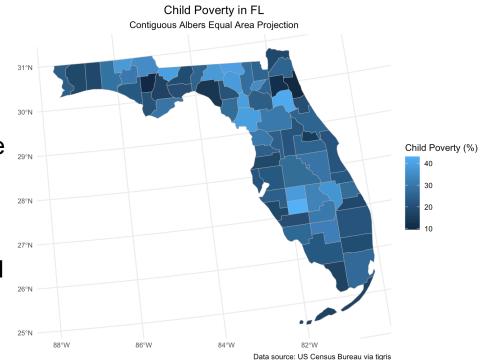
Which (macro-)factors could explain this?

- rural/urban
- race
- marriage
- health insurance
- teenage pregnancies
- job profiles
- income ratios
- something entirely different?

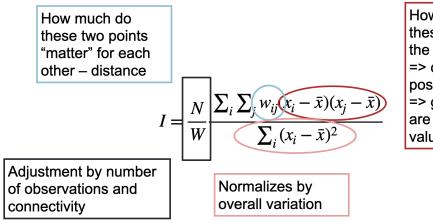
Spatial Data II | Intro

First Law of Geography: "everything is related, but near things are more related than distant things" (Tobler 1970)

- => Spatial autocorrelation
- => We can measure this using Moran's I



AUTOCORRELATION/MORAN'S I

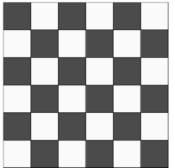


How different are these two points from the mean respectively => does this for all possible locations => gets large if there are more extreme values Significantly above 0 if...

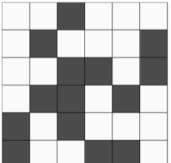
- areas with similar values are closer to each other
- areas with dissimilar values are further apart from each other

AUTOCORRELATION/MORAN'S I

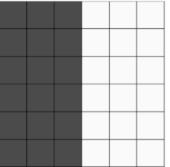
Negative spatial autocorrelation

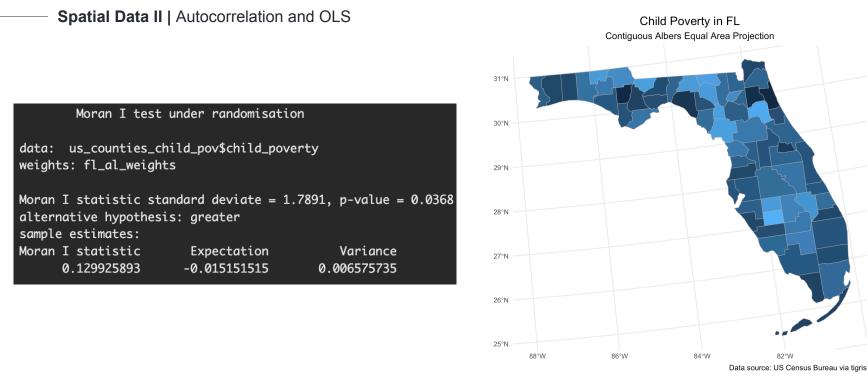


No spatial autocorrelation



Positive spatial autocorrelation





Problem: running an OLS regression requires our observations to be independent from each other - spatial data usually violates this

Child Poverty (%)

40

30

20

10

82°W

Spatial Data II | OLS

	Dependent variable:
	child poverty
Rural	-10.793
Urban	-2.126
Manufacturing jobs	0.017
Age	1.624
Retail Jobs	4.063
Health Care Jobs	6.916
Construction Jobs	4.219
Less than High School	5.804
Unemployment	4.495
Single Moms	2.164
Share Black	0.727
Share Hispanic	-0.691
Uninsured Ind	9.717
Income Ratio	6.901
Share Teen Births	1.573
Share Unmarried	0.346
Constant	-90.984^{***}
Observations	67
\mathbb{R}^2	0.597
Adjusted \mathbb{R}^2	0.468
Residual Std. Error	$5.917 \; (df = 50)$
F Statistic	4.632^{***} (df = 16; 50)
Note:	*p<0.1; **p<0.05; ***p<0.01

Do you see any problems here? (except for the lack of stars)

AUTOCORRELATION IN OLS

Problem: running an OLS regression requires our observations to be independent from each other spatial data usually violates this

=> Spillovers

	Dependent variable:
	child poverty
Rural	-10.793
Urban	-2.126
Manufacturing jobs	0.017
Age	1.624
Retail Jobs	4.063
Health Care Jobs	6.916
Construction Jobs	4.219
Less than High School	5.804
Unemployment	4.495
Single Moms	2.164
Share Black	0.727
Share Hispanic	-0.691
Uninsured Ind	9.717
Income Ratio	6.901
Share Teen Births	1.573
Share Unmarried	0.346
Constant	-90.984^{***}
Observations	67
\mathbb{R}^2	0.597
Adjusted R ²	0.468
Residual Std. Error	5.917 (df = 50)
F Statistic	4.632^{***} (df = 16; 50)
Note:	*p<0.1: **p<0.05: ***p<0.01

AUTOCORRELATION AND SPILLOVERS

- Spillovers neighboring states are somewhat more similar/influence each other
 => we need to control for this omitted variable bias
- On the right-hand side of the regression formula (independent variables): neighborhoods might share local policies, cultural/geographic factors, economic shocks, etc.; also: my neighbor's problems might be similar to my problems
- On the left side (dependent variable):
 Interactions of child poverty between neighboring counties e.g., higher likelihood of families moving between neighboring counties, shared labor markets (beyond what's covered in our observed data)
- Spillovers can be global or local
 - Local: neighboring states have an immediate, local effect on each other (LeSage 2014: cigarette smuggling across borders)
 - Global: these effects travel through the entire system (LeSage 2014: traffic congestion in county A leading to global effects overall)

AUTOCORRELATION AND SPILLOVERS

Problem: running an OLS regression requires our observations to be independent from each other – spatial data usually violates this

- What does this mean *in data*
 - Predictions are not equally good for all observations
 - Autocorrelation in residuals

Residual = actual value – predicted value => $r_i = y_i - \hat{y}_i$

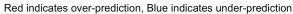
Spatial Data II | OLS Residuals

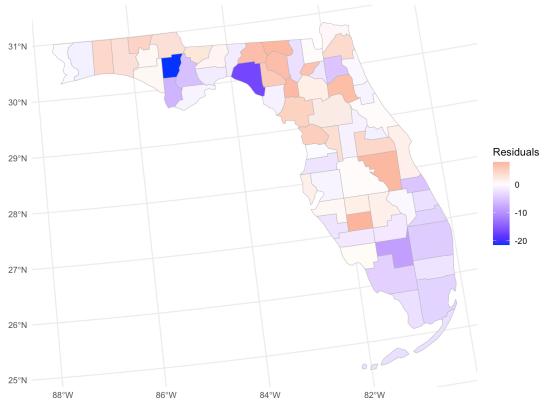
Moran I test	under randomisatio	n
<pre>data: us_counties_ch weights: fl_al_weight</pre>	ild_pov_res\$residu :s	als
Moran I statistic sta alternative hypothesi sample estimates:		0127, p-value = 0.02207
Moran I statistic 0.141540396	Expectation -0.015151515	Variance 0.006060929

=> over-/under-prediction seems to be significantly clustered in space

=> including spatial dependencies should enhance model fit

OLS Residuals





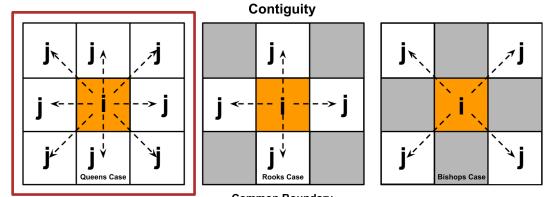
LOCAL MORAN'S I

Global Moran's I gives us a measurement for the entirety of the units Local Moran's I gives us an estimate *per unit i*

$$I_{i} = \frac{(x_{i} - \bar{x})}{\sum_{k=1}^{n} (x_{k} - \bar{x})^{2} / n} \sum_{j \in N_{i}} w_{ij}(x_{j} - \bar{x})$$

n = total number of spatial units

- w_{ij} = spatial weight between i and j
- x_i = value at location i
- x_j = values of all neighboring units x_k = values of all units
- \bar{x} = mean value



Common Boundary

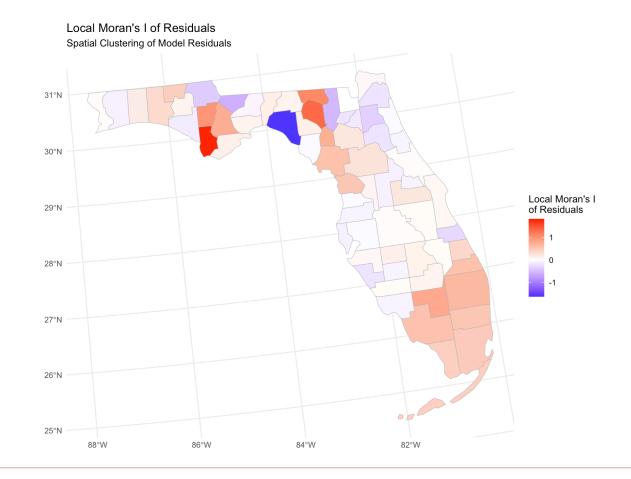
...other specifications exist, e.g., k nearest neighbors

TECHNICAL ASPECTS – LOCAL MORAN'S I

$$I_{i} = \frac{(x_{i} - \bar{x})}{\sum_{k=1}^{n} (x_{k} - \bar{x})^{2}/n} \sum_{j \in N_{i}}^{N} w_{ij}(x_{j} - \bar{x})$$

"how much does x_i differ from the mean" – z-standardized value of x_i "how much do x_i's neighbors x_j differ from the mean" – zstandardized value of X_j

Spatial Data II | Local Moran's I of residuals



SPATIAL LAGS AND ERRORS

Autocorrelation can be modeled in two ways: lags and error

- Lags: something we observe in neighboring entities (here: counties) has an effect on our focal entity
- Error: something we do not observe yet that alters our results is the same for the focal entity and the neighboring ones

=> to get unbiased estimates, we need to include this in our models

SPATIALLY LAGGED X VARIABLES (SLX)

Main idea: how do characteristics of neighboring counties affect the focal county Solution: include neighboring counties' average values for each independent variable

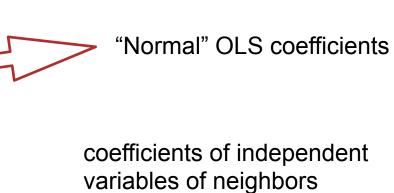
 $y = X\beta + WX\theta + \varepsilon$

with $WX\theta$ being the average value of the neighbors independent variables

- Unidirectional: neighboring counties' values can impact focal county

Spatial Data II | SLX

rural urban	Estimate -114.3738 -5.9267 -1.3428	Std. Error 124.8242	t value -0.916		
rural urban	-5.9267		-0.916	0 2000	
urban		10 4477		0.3660	
	1 2/20				
	-1.3420	3.6842		0.7178	
lnmanufacturing	-2.5830			0.3251	
lnag	1.8314			0.2067	
lnretail	1.2280	5.3221	0.231	0.8189	
lnhealthss	-4.2070	7.6829	-0.548	0.5876	
lnconstruction	5.0867	4.3053	1.182	0.2456	
lnlesshs	1.6336	5.5744	0.293	0.7713	
lnunemployment	8.7636	10.1393	0.864	0.3935	
lnsinglemom	4.2672	5.2981	0.805	0.4262	
lnblack	0.8085	2.3445	0.345	0.7323	
lnhispanic	0.3910	3.0728	0.127	0.8995	
lnuninsured	1.3458	12.6768	0.106	0.9161	
lnincome_ratio	9.7831	9.3062	1.051	0.3006	
lnteenbirth	2.5151	2.5712	0.978	0.3349	
lnunmarried	1.3596	4.6326	0.293	0.7709	
W_rural	-11.3333	34.0115	-0.333	0.7410	
W_urban	-8.9307	8.1773	-1.092	0.2825	
W_lnmanufacturing	3.2345	6.1164	0.529	0.6004	
W_lnag	2.5738	3.0888	0.833	0.4105	
W_lnretail	25.5169	12.2309	2.086	0.0445 *	
W_lnhealthss	31.7171	16.7790	1.890	0.0673 .	
W_lnconstruction	-2.2581	11.5896	-0.195	0.8467	
W_lnlesshs	2.5208	13.2305	0.191	0.8500	
W_lnunemployment	-22.4139	21.1983	-1.057	0.2978	
W_lnsinglemom	-4.8413	12.7953	-0.378	0.7075	
W_lnblack	-0.7456	5.5445	-0.134	0.8938	
W_lnhispanic	3.1679	6.4761	0.489	0.6279	
W_lnuninsured	-12.6350	31.7693	-0.398	0.6933	
W_lnincome_ratio	-9.3658	22.5827	-0.415	0.6809	
W_lnteenbirth	4.3760	6.0091	0.728	0.4715	
W_lnunmarried	-0.4253	9.1812	-0.046	0.9633	
Signif. codes: 0	'***' 0.00	01 '**' 0.03	1 '*' 0.(95'.'0.1	''1
Signif. Codes: 0	0.00	<u>.</u>	L * 0.0	. 0.1	1



=> if x increases in neighboring regions by 1, y in focal region increases by coefficient

fit has improved $- R^2$ of OLS was 0.468

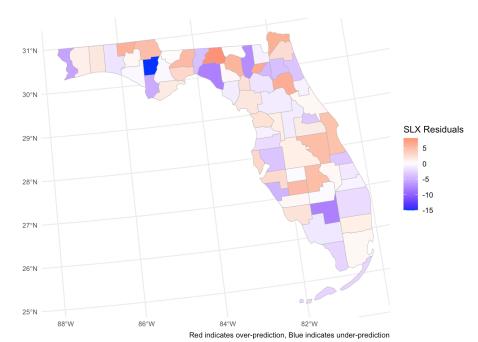
on 32 and 34 DF. p-value:

Adjusted R-squared: 0.513

Multiple R-squared: 0.7491,

Moran I test	under randomisat	ion		
data: us_counties_child_pov\$slx_residuals weights: fl_al_weights				
Moran I statistic standard deviate = -0.83399, p-value = 0.7979 alternative hypothesis: greater sample estimates:				
Moran I statistic	Expectation	Variance		
-0.081608083	-0.015151515	0.006349685		

=> over-/under-prediction not significantly clustered in space anymore



SLX Model Residuals

SPATIALLY LAGGED Y VARIABLES (SAR)

Main idea: how do characteristics of neighboring counties' outcome variable affect the focal county's outcome variable Solution: include neighboring counties' outcome values

 $y = X\beta + \rho Wy + \varepsilon$

with Wy being the weighted average value of the neighbors outcome variable

- Global spillover: effect ripples across neighbors and to focal unit effect is not limited to the focal area
- Should be theoretically justified

Spatial Data II | SAR

Type: lag

Coefficients:	(asymptotic	standard en	rrors)	
	Estimate	Std. Error	z value	Pr(> z)
(Intercept)	-86.50330	28.97481	-2.9855	0.002831
rural	-9.49166	11.60343	-0.8180	0.413354
urban	-1.59776	2.36777	-0.6748	0.499807
lnmanufacturin	g -0.42812	1.65571	-0.2586	0.795965
lnag	1.29667	1.06902	1.2130	0.225147
lnretail	2.53321	4.03190	0.6283	0.529812
lnhealthss	4.43444	5.31895	0.8337	0.404447
Inconstruction	4.25652	3.04978	1.3957	0.162812
lnlesshs	5.91324	3.79790	1.5570	0.119476
lnunemployment	6.42765	6.31359	1.0181	0.308647
lnsinglemom	2.87869	3.47234	0.8290	0.407084
lnblack	0.85718	1.61375	0.5312	0.595300
lnhispanic	-0.73967	1.83809	-0.4024	0.687382
lnuninsured	8.35100	8.51561	0.9807	0.326755
lnincome_ratio	6.89367	6.77731	1.0172	0.309073
lnteenbirth	1.41859	1.76632	0.8031	0.421899
lnunmarried	0.57856	2.81877	0.2053	0.837375
urban lnmanufacturin lnag lnretail lnhealthss lnconstruction lnlesshs lnunemployment lnsinglemom lnblack lnhispanic lnuninsured lnincome_ratio lnteenbirth	-1.59776 g -0.42812 1.29667 2.53321 4.43444 4.25652 5.91324 6.42765 2.87869 0.85718 -0.73967 8.35100 6.89367 1.41859	2.36777 1.65571 1.06902 4.03190 5.31895 3.04978 3.79790 6.31359 3.47234 1.61375 1.83809 8.51561 6.77731 1.76632	-0.6748 -0.2586 1.2130 0.6283 0.8337 1.3957 1.5570 1.0181 0.8290 0.5312 -0.4024 0.9807 1.0172 0.8031	0.499807 0.795965 0.225147 0.529812 0.404447 0.162812 0.119476 0.308647 0.407084 0.595300 0.687382 0.326755 0.309073 0.421899

Rho: 0.20847, LR test value: 1.5856, p-value: 0.20796 Asymptotic standard error: 0 13068

z-value: 1.5953, p-value: 0.11065 Wald statistic: 2.5449, p-value: 0.11065

Log likelihood: -203.5836 for lag model ML residual variance (sigma squared): 25.256, (sigma: 5.0256) Number of observations: 67 Number of parameters estimated: 19 AIC: 445.17, (AIC for lm: 444.75) LM test for residual outcommetation test value: 4.3808, p-value: 0.036347 Coefficients not directly interpretable => direction and significance – a bit like Pearson's r => to get effect size: impact – see this week's lab

Insignificant – including lagged y does not tell us anything

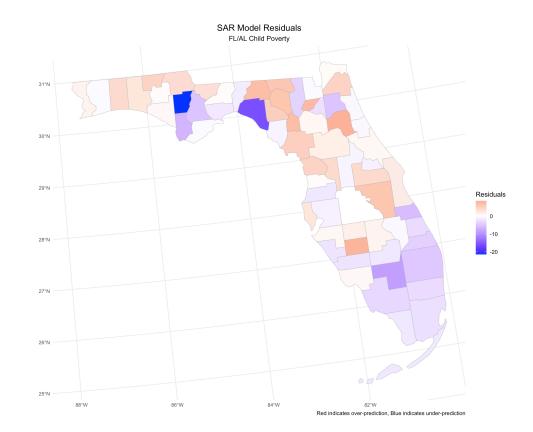
AIC is higher (== worse) than basic OLS

Spatial Data II | SAR

Moran I test under randomisation
data: us_counties_child_pov\$sar_residuals weights: fl_al_weights
Moran I statistic standard deviate = 1.5529, p-value = 0.0602 alternative hypothesis: greater sample estimates:
Moran I statistic Expectation Variance 0.105699393 -0.015151515 0.006056513

=> over-/under-prediction not significantly clustered in space anymore

=> however, still more clustered in space than with SLX model



SPATIAL ERROR MODEL (SEM)

Main idea: there might be things we can't measure that affect the focal county and the neighboring ones

Solution: include an error term for the focal county and the neighboring counties

 $y = X\beta + u$

with $u = \lambda W u + \varepsilon$, the function of our unexplained error (ϵ) and our neighbors residual values

 Assumption: some clustered residuals are higher than expected and, therefore, there needs to be another missing variable that we cannot account for with our data

Spatial	Data I	I SEM
---------	--------	---------

<pre>Call:errorsarlm(formula = model_formula, data = us_counties_child_pov,</pre>				
Residuals:				
Min	1Q Media	n 3Q	Мах	
-18.95014 -1.97	7514 0.2558	8 2.61763	9.27680	
Type: error				
Coefficients: (a	symptotic st	andard error	s)	
	Estimate St	d. Error z v	alue Pr(> z)	
(Intercept)	-75.20687	29.23447 -2.	5725 0.01010	
rural	-4.50894	10.81857 -0.	4168 0.67684	
urban	-0.59601	2.06935 -0.	2880 0.77333	
lnmanufacturing	-2.38896	1.62885 -1.	4667 0.14247	
lnag	0.92031	0.99846 0.	9217 0.35667	
lnretail	-0.37313	3.53117 -0.	1057 0.91585	
lnhealthss	0.50771	5.38915 0.	0942 0.92494	
lnconstruction	4.64469	2.71901 1.	7082 0.08759	· · · · · · · · · · · · · · · · · · ·
lnlesshs	6.07122	3.55716 1.	7068 0.08787	
lnunemployment	9.08747	6.34399 1.	4325 0.15201	
lnsinglemom	2.54767	3.28203 0.	7762 0.43760	
lnblack	1.86149	1.45370 1.	2805 0.20036	
lnhispanic	-0.65779	1.96083 -0.	3355 0.73728	
lnuninsured	9.57106	8.37092 1.	1434 0.25289	
lnincome_ratio	8.55170	6.11118 1.	3994 0.16171	
lnteenbirth	1.26952	1.51936 0.	8356 0.40340	
lnunmarried	1.16675	2.49139 0.	4683 0.63956	
Lembder 0 EC704				FE972

Lambda: 0.56704, LR test value: 7.6788, p-value: 0.0055872 Asymptotic standard error: 0.11623

z-value: 4.8785, p-value: 1.0691e-06 Wald statistic: 23.799, p-value: 1.0691e-06

Log likelihood: -200.537 for error model ML residual variance (sigma squared): 21.322, (sigma: 4.172) Number of observations: 67

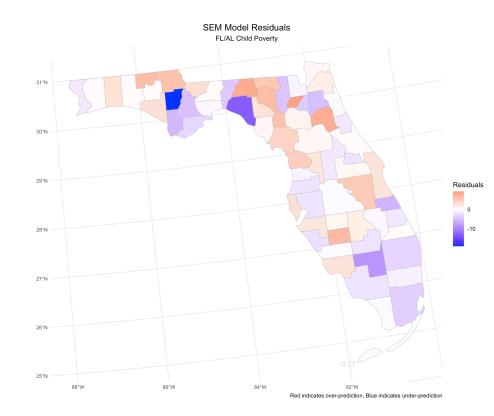
Humber of parameters estimated: 19 AIC: 439.07, (AIC for lm: 444.75) Interpretation similar to OLS coefficients; but: need to take into account errors => here: positive lambda, hence positive spatial correlation in errors – unobserved factors influence neighboring counties

Significant Lambda – error term is spatially autoregressive

AIC is lower (== better) than basic OLS

Moran I test u	under randomisati	on		
data: us_counties_ch weights: fl_al_weight:	- i · -	uals		
Moran I statistic standard deviate = 0.29554, p-value = 0.3838 alternative hypothesis: greater sample estimates:				
Moran I statistic 0.008036192	Expectation -0.015151515	Variance 0.006155852		

=> over-/under-prediction not significantly clustered in space anymore



Spatial Data II | Conclusion

HERE

SEM shows best performance (lowest AIC, removes Spatial autocorrelation in residuals)

More on this: this week's lab

SO, WHAT TO DO IN PRACTICE?

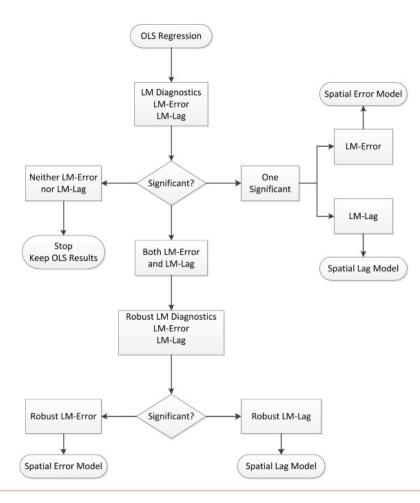
Lagrange Multiplier Test Diagnostics for Spatial Dependence and Spatial Heterogeneity

Luc Anselin

Abstract

Several diagnostics for the assessment of model misspecification due to spatial dependence and spatial heterogeneity are developed as an application of the Lagrange Multiplier principle. The starting point is a general model which incorporates spatially lagged dependent variables, spatial residual autocorrelation and heteroskedasticity. Particular attention is given to tests for spatial residual autocorrelation in the presence of spatially lagged dependent variables and in the presence of heteroskedasticity. The tests are formally derived and illustrated in a number of simple empirical examples.

Spatial Data I | Conclusion



ANOTHER OPTION: SDM (SPATIAL DURBIN MODEL) AND SDEM (SPATIAL DURBIN ERROR MODEL)

SDM: includes lagged x and y of neighbors – can be simplified to SLX, SAR OLS $y = \rho Wy + X\beta + WX\theta + \varepsilon$

SDEM: does only include lagged x of neighbors + error term – can be simplified to SEM, SLX, OLS $y = X\beta + WX\theta + u$, $u = \lambda Wu + \varepsilon$

LeSage 2014: Durbin Models should be used at all times – all other models are just social cases

Start with theory – global or local; then use appropriate model (local = SDEM, global = SDM)

Spatial Data II | Outro

More on this, including decision criteria: in this week's script

THE NEXT WEEKS

- Next two weeks: ABMs
- Then: 1 week sans class work on your projects, prepare presentation
 => Presentation should include: motivation (w/ some theory/prior research), research question, data source, method, perhaps first results
- Deadline for presentation: January 29, 6PM, via email
- Will forward them to one of your peers who will serve as an opponent
- Now: feel free to stick around and ask questions

UNIVERSITÄT LEIPZIG

MERCI

Felix Lennert Institut für Soziologie

felix.lennert@uni-leipzig.de www.uni-leipzig.de

