

UNIVERSITÄT LEIPZIG

Toolbox CSS – Measuring Similarity; Words as Vectors

NSG SR 423, 03/12/2024 Felix Lennert, M.Sc.

Similarity and Embeddings | Outline

OUTLINE

- How to think about "similarity"
- Words as vectors the Distributional hypothesis
- Properties of these new models
- How we use them in the Social Sciences

BOW HYPOTHESIS

- So far: everything was about the bag-of-words model
- Intuition: document represented by terms it contains
- We can use this for similarity
- Idea: documents are in a high-dimensional space based on the words they contain (each word is a dimension)

DOCUMENT SIMILARITY

- Document 1: "The cute fox jumps over the lazy dog"
- Document 2: "The nimble fox jumps over the slow dog"
- Document 3: "Cats are rude animals"
- Document 4: "Cats are cute!"

	fox	dog	cats	animals	cute	lazy	nimble	slow	rude
D 1	1	1	0	0	1	1	0	0	0
D 2	1	1	0	0	0	0	1	1	0
D 3	0	0	1	1	0	0	0	0	1
D 4	0	0	1	0	1	0	0	0	0

DOCUMENT SIMILARITY

"SIMILARITY"

- So how can we think about similarity? → measure of "distance" in this space
- Two common measures:
 - Euclidean Distance (how distant are these points in "absolute terms")

$$d(\mathbf{u}, \mathbf{v}) = \sqrt{\sum_{i=1}^{n} (u_i - v_i)^2}$$

- Cosine Similarity (how does their angle from origin differ) cosine_similarity(\mathbf{u}, \mathbf{v}) = $\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$

EUCLIDEAN DISTANCE

$$d(\mathbf{u}, \mathbf{v}) = \sqrt{\sum_{i=1}^{n} (u_i - v_i)^2}.$$

Idea: If two values are "the same", they do not add to the distance
 lower values indicate "closer" points

-
$$\mathbf{D}_1 = (1,1,0,0,1,1,0,0), \quad \mathbf{D}_2 = (1,1,0,0,0,0,1,1)$$

- $d(\mathbf{D}_1,\mathbf{D}_2) = \sqrt{(1-1)^2 + (1-1)^2 + (0-0)^2 + (0-0)^2 + (1-0)^2 + (1-0)^2 + (0-1)^2 + (0-1)^2}$
= $\sqrt{0+0+0+0+1+1+1} = \sqrt{4} = 2.$

EUCLIDEAN DISTANCE

$$\begin{bmatrix} D_1 & D_2 & D_3 & D_4 \\ D_1 & 0 & 2 & 2.449 & 2 \\ D_2 & 2 & 0 & 2.449 & 2.449 \\ D_3 & 2.449 & 2.449 & 0 & 1.414 \\ D_4 & 2 & 2.449 & 1.414 & 0 \end{bmatrix}$$

EUCLIDEAN DISTANCE VS. COSINE SIMILARITY

- Problem with Euclidean Distance: document length matters
 - Longer documents might contain certain terms multiple times (if we have a long document containing fox 10 times, this might be less similar to other documents just because of its length)
 - No straight-forward way around this (but see Stoltz & Taylor 2024, p. 173 for a potential workaround)
- Workaround: Cosine similarity looks at "angles" from origin

COSINE SIMILARITY

$$\ \ \text{cosine_similarity}(\mathbf{u},\mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

 Idea: numerator is high if two vectors have high values on same dimensions (inner product or dot product); we divide by magnitude of vectors (the denominator) to standardize

→ Higher values indicate higher similarity

Inner Product:

 $\mathbf{D}_1 \cdot \mathbf{D}_2 = (1 \cdot 1) + (1 \cdot 1) + (0 \cdot 0) + (0 \cdot 0) + (1 \cdot 0) + (1 \cdot 0) + (0 \cdot 1) + (0 \cdot 1) = 2.$

- Magnitudes:

$$\|\mathbf{D}_{1}\| = \sqrt{1^{2} + 1^{2} + 0^{2} + 0^{2} + 1^{2} + 1^{2} + 0^{2} + 0^{2}} = \sqrt{4} = 2, \|\mathbf{D}_{2}\| = \sqrt{1^{2} + 1^{2} + 0^{2} + 0^{2} + 0^{2} + 1^{2} + 1^{2}} = \sqrt{4} = 2.$$

Cosine Similarity: cosine_similarity($\mathbf{D}_{1}, \mathbf{D}_{2}$) = $\frac{\mathbf{D}_{1} \cdot \mathbf{D}_{2}}{\|\mathbf{D}_{1}\| \|\mathbf{D}_{2}\|} = \frac{2}{2 \cdot 2} = 0.5.$

EUCLIDEAN DISTANCE VS. COSINE SIMILARITY

$$\begin{bmatrix} D_1 & D_2 & D_3 & D_4 \\ D_1 & 1 & 0.5 & 0 & 0.354 \\ D_2 & 0.5 & 1 & 0 & 0 \\ D_3 & 0 & 0 & 1 & 0.5 \\ D_4 & 0.354 & 0 & 0.5 & 1 \end{bmatrix}$$

THE PROBLEM WITH BOW

- All words are treated the same
 - "dog" and "cat" are as similar as "dog" and "house"
 - "dogs" and "dog" are as similar as "dog" and "house"
 we can mitigate the latter by using lemmas/wordstems
- This works fairly well for most tasks
- However, wouldn't it be great if we could harness more information on the "sense" of words?

DISTRIBUTIONAL HYPOTHESIS

- Was formulated in the 1950s by Firth, can also be traced back to Wittgenstein
- "Words that occur in *similar contexts* tend to have *similar meanings*." (Jurafsky and Martin, forthcoming)
- Word embeddings capture words' contexts instead of the word itself

DISTRIBUTIONAL HYPOTHESIS

Example:

- Ongchoi is delicious sauteed with garlic.
- Ongchoi is superb over rice.
- ...ongchoi leaves with salty sauces...
-spinach sauteed with garlic over rice...
- ...chard stems and leaves are delicious...
- ...collard greens and other salty leafy greens

⇒ What do you think does Ongchoi look like?

DISTRIBUTIONAL HYPOTHESIS

- "Words that occur in *similar contexts* tend to have *similar meanings*." (Jurafsky and Martin, forthcoming)
- Word embeddings capture words' contexts instead of the word itself
- Words become dots in a multidimensional space (position determined by meaning)

HOW ARE THEY TRAINED

- We want terms which appear in the same contexts to have roughly the same position
- Context is determined by the words that surround a word

is traditionally followed by cherry often mixed, such as strawberry computer peripherals and personal digital a computer. This includes information
 pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually available on the internet

HOW ARE THEY TRAINED

is traditionally followed by cherry often mixed, such as
computer peripherals and personal a computer. This includes
cherry pie, a traditional dessert rhubarb pie. Apple pie assistants. These devices usually available on the internet

	aardvark	•••	computer	data	result	pie	sugar	•••
cherry	0	•••	2	8	9	442	25	•••
strawberry	0	•••	0	0	1	60	19	•••
digital	0		1670	1683	85	5	4	•••
information	0		3325	3982	378	5	13	•••

HOW ARE	THEY .	TRAINED
----------------	--------	---------

	aardvark	•••	computer	data	result	pie	sugar	•••
cherry	0	•••	2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	•••
digital	0	•••	1670	1683	85	5	4	•••
information	0	•••	3325	3982	378	5	13	•••

MEASURING SIMILARITY

- Similarity can be assessed by using cosine similarity

MEASURING SIMILARITY

$$|cherry| = \sqrt{2^2 + 442^2}, |digital| = \sqrt{1670^2 + 5^2}, |information| = \sqrt{3325^2 + 5^2}$$

Now we can properly compare the values:

$$cosine(cherry, digital) = \frac{2 \times 1670 + 442 \times 5}{\sqrt{2^2 + 442^2} \times \sqrt{1670^2 + 5^2}} = \frac{5590}{\sqrt{195368}\sqrt{2788925}} = 0.007572978$$

$$cosine(information, digital) = \frac{3325 \times 1670 + 5 \times 5}{\sqrt{3325^2 + 5^2} \times \sqrt{1670^2 + 5^2}} = \frac{5552775}{\sqrt{11055625}\sqrt{2788925}} = 0.9999955$$

Cosine similarity is

- 0 if two vectors are in 90° angle (orthogonal)
- 1 if they're perfectly aligned
- -1 if they show in perfectly opposite direction

	aardvark	•••	computer	data	result	pie	sugar	
cherry	0		2	8	9	442	25	
strawberry	0	•••	0	0	1	60	19	•••
digital	0	•••	1670	1683	85	5	4	
information	0	•••	3325	3982	378	5	13	•••

HOW ARE THEY TRAINED

- Problem with this word-word-matrix: it is quite sparse (i.e., there are many zeroes)
- Solution: reduce its dimensionality (typically to 50-300 dimensions)
- Dimensions have no clear interpretation but: relationships between words are retained

HOW ARE THEY TRAINED

- Newer applications have different strategies to learn the weights
- But the intuitions still remain the same
- Also, pre-trained embeddings exist that were trained on huge corpora of text ("transfer learning" – using a model that has been trained on a different data source)
- Social scientists have been using these new things in various ways thus far:
 - For better supervised ML classifiers (Bonikowski et al. 2023)
 - To analyze how the meanings of words have shifted (Garg et al. 2018, various things by Laura Nelson and Alina Arseniev-Kohler)
 - For political scaling (Rheault and Cochrane 2018)

Why are they useful for social scientists? (Grimmer et al. 2022)

- They encode similarity,
- They allow for "automatic generalization,"
- They provide a measure of meaning.

Why are they useful for social scientists? (Grimmer et al. 2022)

- They allow for automatic generalization
 - Big problem for supervised classifiers: it can only learn from the words it has seen before
 - By including (pre-trained) embeddings in the process, the classifier also gets information on words it hasn't seen before
 - This can also backfire: the social world is unfair and biased; if word embeddings are used for tasks they may reinforce these inequalities

→ That's why Computer Scientists need good sociologists 5

Why are they useful for social scientists? (Grimmer et al. 2022)

- they provide a measure of meaning.
 - We can compare the relationships of words over time and authors/ speakers
 - Latent higher-order relationships are retained, too, enabling us to answer questions in a new way

WORD MEANING OVER TIME

Why are they useful for social scientists? (Grimmer et al. 2022)

- they provide a measure of meaning.
 - We can compare the relationships of words over time and authors/ speakers
 - Latent higher-order relationships are retained, too, enabling us to answer questions in a new way

Similarity and Embeddings | Word Embeddings

Embeddings Quiz 2: Where would you put the word "cow"?

Why are they useful for social scientists? (Grimmer et al. 2022)

- They encode similarity
 - Two words are very similar if they appear interchangeably (synonyms)
 - Also, higher-order relationships are captured

$$\overrightarrow{Paris} - \overrightarrow{France} = ? - \overrightarrow{Italy}$$

$$\overrightarrow{Paris} - \overrightarrow{France} + \overrightarrow{Italy} = ?$$

$$\overrightarrow{Paris} - \overrightarrow{France} + \overrightarrow{Italy} \approx \overrightarrow{Rome}$$

Similarity and Embeddings | Latent Concepts

VARIABLE VS. FIXED EMBEDDING SPACES (STOLTZ & TAYLOR 2021)

- Variable Embedding Space: train multiple models on sub-corpora and compare them
 - compare word similarities over time
 - potential challenge: embedding spaces need to be aligned (if you want to compare how word meanings change in relation to all other words)
 - e.g., comparisons of word meaning over time, per author
- Fixed Embedding Space: use one embedding space for the entire corpus
 - embed documents in this space (usually using pre-trained models)
 i.e., take all words within one document extract their vectors use centroid of the document (average of all vectors)
 - e.g., comparison of document similarities, concept engagement

VARIABLE SPACES – APPLICATIONS (STOLTZ & TAYLOR 2021)

- job - school - crime - family

Cosine Similarity of 'Immigration' and Key Terms by Decade, 1880 to 2000.

FIXED SPACE – APPLICATIONS (STOLTZ & TAYLOR 2021)

FIXED SPACE – APPLICATIONS (STOLTZ & TAYLOR 2021)

Immigration - Immigration + Job - Immigration + School · Immigration + Family - Immigration + Crime

Concept Mover's Distance (CMD)

creates a document that contains a certain concept, then measures the similarity between the "concept" document and the documents in question

Fig. 4. News Articles' Conceptual Engagement Over Time (with CMD).

OUTCOME MEASURES

- You get a measure of similarity/distance
 - Do words bear the same meaning (synonyms or some higher-order relationship)
 - How does a word score on some latent construct (e.g., class, positivenegative, gender)
 - What's the similarity between certain documents
- These can be connected to document variables
 - author, time, outlet, political leaning of author/outlet, etc.

WHAT'S NEXT

- The latest models (EIMo, BERT) can now also take context into account: vectors of the same word may vary depending on which words they are surrounded by
 - Examples: bank–money ↔ bank–river; cell–prison ↔ cell–phone
 - Makes for more accurate predictions
- This also facilitates language generation GPT (generative pre-trained transformers)
- ⇒ Next week

WHAT I WOULD SUGGEST YOU TO READ NEXT IF YOU WANT TO WORK WITH THESE THINGS

- You need to test your hypotheses; this recent paper by <u>Rodriguez et al.</u> (2023) provides you with a method to perform hypothesis tests with embeddings
- These papers deal with the limitations: Arseniev-Kohler (2022), <u>Rodriguez</u> and <u>Spirling (2022)</u>
- Stoltz and Taylor (2021) and Stoltz and Taylor (2024) chapter 11
- The chapters 7 and 8 in Grimmer et al. (2022) are a thorough introduction; also chapter 6 in <u>Jurafsky and Martin (forthcoming)</u>
- A paper by Bender et al. (2021) on the "dangers of stochastic parrots"

REFERENCES

- Bender, Emily, Timnit Gebru, Angelina McMillan-Major, Shmargaret Shmitchell.
 2021. "On the Dangers of Stochastic Parrots: Can Language Models be too Big?," ACM Conference on Fairness, Accountability, and Transparency (ACM FAccT) '21.
- Garg, Nikhil, Londa Schiebinger, Dan Jurafsky, and James Zou. 2018. "Word Embeddings Quantify 100 Years of Gender and Ethnic Stereotypes." *Proceedings of the National Academy of Sciences* 115(16):3635–44.
- Grimmer, Justin, Margaret Roberts, and Brandon Stewart. 2022. Text as Data: A New Framework for Machine Learning and the Social Sciences. Princeton: Princeton University Press.
- Stoltz, Dustin S. and Marshall A. Taylor. 2021. "Cultural Cartography with Word Embeddings." *Poetics* 88.

UNIVERSITÄT LEIPZIG

MERCI

Felix Lennert Institut für Soziologie

felix.lennert@uni-leipzig.de www.uni-leipzig.de

