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BEFORE WE START 

− Today is going to be about the logic behind and the steps you researchers 
have to do when using supervised & unsupervised text classification 

− Caveat: 
− models based on the bag of words-assumption (which we will use today) 

are becoming increasingly outdated 
− new models are there and incredible, but they remain black boxes we 

cannot open 
− yet they are fairly user-friendly, about 5 lines of code (and a lot of waiting 

time depending on your computer) 
− and: the training and evaluation process is basically the same
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RECAP: MEASUREMENT USING TEXT DATA

− Text mining is often about “producing data” – a (numerical) summary of the 
documents in question 

− With the methods we’re using today, these produced data can look like… 
− A discrete label from binary classification (e.g., “positive/negative”, being 

about a certain topic, “sexist/non-sexist”) 
− A discrete label from multinomial classification (e.g., multiple topics, 

authors) 
− A continuous value (sentiment, probability of having a certain label, 

ideological scaling) 
⇨ We can then eventually use these values/label counts to test hypotheses
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RECAP: MEASUREMENT USING TEXT DATA

− Example: labels counted over time 

− International politics frames that made it to 
NYT headlines in 2001 (Boydstun 2013; taken 
from Grimmer et al. 2022)
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RECAP: MEASUREMENT USING TEXT DATA
− Example: using classification accuracy as continuous indicator for speech polarization
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HOW TO PRODUCE THESE DATA?

Most basic approach: read the text 
1. Develop a coding scheme (based on prior theory) 
2. Read text, decide on annotation based on coding scheme 
3. Do it for all your documents 
4. … 
5. …there is plenty of text available now, so it takes forever… 
6. Consider different career paths over and over again as this process sucks so bad 

⇨ Luckily, there are computational tools we can harness to take away some of the pain  

⇨ MACHINE LEARNING
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Unsupervised ML | Outline 
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HOW TO PRODUCE THESE DATA?

Dictionary-based analysis 
Computer applies rules 

Supervised ML 
Computer learns relationship 
(“rules”) between data and 
answers 

Unsupervised ML 
Computer suggests rules 
and answers based on 
patterns in data
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EVEN OLS IS MACHINE LEARNING IF YOU WILL

10Felix Lennert, M.Sc. 

inspired by Ash (2018)

MPG = β0 + β1Weight + ϵ
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HOW DOES IT LOOK FOR TEXT – “TEXT REGRESSION”
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Objective: to learn a model that maps an outcome  to the features  
 

⇨ Requires labeled documents 

⇨ Features (words) are treated as predictors  

⇨ Algorithms will not accept words – we use word counts (alternatives: “one-hot 
encoding” (1 if word is present in document, 0 if not), tf-idf values, embedding 
vectors)

Y W′￼

Yi = βW′￼i + ϵi
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HOW DOES IT LOOK FOR TEXT – “TEXT REGRESSION”
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Objective: to learn a model that maps an outcome  to the features  
⇨ Eventually, predictions can be made on unseen documents 

⇨ Different approaches/algorithms exist – which one to choose depends on 
computational capabilities and desired outcome (i.e., discrete label – binary or 
multinomial – or continuous value)

Y W′￼
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SUPERVISED LEARNING WITH TEXT – THE PROCESS

13

− Choose a set of documents (corpus) 
− Annotate a sub-set of the corpus 
− Split the annotated set into training and test set (for validity assessment) 
− Preprocess the documents 
⇨ e.g., tokenization (also: bi- and trigrams), weighting, stemming/lemmatization, etc. –

 whatever works best 
− Train a classifier on training set 
⇨ tuning with cross-validation 

− Evaluate classifier using test set and confusion matrix 
− If sufficient, apply it to unlabeled data  

(for a hands-on guide, see Barberá et al. 2021)

Felix Lennert, M.Sc. 

Supervised & Unsupervised ML | The Process



CHOICE OF CORPUS
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− Must fit the question 
− Usual approach: keyword-based search (e.g., using regular expressions) 
⇨ has its own pitfalls though, see Barberá et al. (2021) and King, Lam, and 
Roberts (2017)
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CHARACTERISTICS OF A GOOD ANNOTATED SET (GRIMMER 
ET AL. 2022, P. 190)
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− Objective–intersubjective: categories are objectively measured; 
researchers have a shared understanding of them 

− A priori: codebook is derived from theory 
− Reliable: annotation process is repeatable across coders – will yield same 

results 
− Valid: concept of interest is clearly measured 
− Generalizable: the training set is a representative sample of the underlying 

texts (and also the final population) 
− Replicable: approaches should replicate with same and different data
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ANNOTATION OF TRAINING AND TEST SET OF CORPUS
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Step 1: Randomly sample documents from corpus 
− Sample should be representative (e.g., if corpus spans a long time period, 

has different authors, etc.) 
− Usually, algorithm can only derive rules for terms it has seen
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ANNOTATION OF TRAINING AND TEST SET OF CORPUS
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Step 2: Define your codebook 
− Usually: rules depend on your theory 

− They need to be stated explicitly (in paper and/or appendix) 
− Ideally, you find examples from the data for each rule  
⇨ To guide your reader 
⇨ But also for yourself 

− Sometimes, codebooks are already available (e.g., from related studies)

Felix Lennert, M.Sc. 

Supervised & Unsupervised ML | The Process



ANNOTATION OF TRAINING AND TEST SET OF CORPUS
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Step 3: Get other coders/get ready to annotate multiple times 
− Needed to assess the reliability of the coding process 
⇨ Either between raters 
⇨ If only one rater exists: multiple timepoints 

− Also a test for the codebook 
− Finally, agreement between coders needs to be assessed 
− Ideally: make a test run with a set that will be later discarded to ensure that 

concepts are understood; discuss cases of disagreement  
− More on this: Barberá et al. (2021) 
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ANNOTATION OF TRAINING AND TEST SET OF CORPUS

19

Step 4: Determine training and test set 
− Training set: used to train the model 
− Test set: used to evaluate performance  
− Usual split: 80/20 
− Important: classes should be equally represented in training and test set (can 

be mitigated using upsampling or downsampling)
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PREPROCESSING
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− No one-fits-all solution 
− recipes and the tune package make it easy to experiment a bit 
− Common steps: 

− Using bi- and trigrams 
− Weighting by TF or TF-IDF 
− Stemming/Lemmatization 
− Removal of rare/common words or stopwords (feature reduction) 
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TRAINING THE CLASSIFIER
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Step 1: Choose a classifier 
⇨ Depends on question and computational capabilities 

− Do you want to predict continuous or categorical value? 
− Will you run the models on a server or your own laptop? 

Step 2: Train classifier(s) using training set  
− Use different specifications of training set 
− Use different classifiers 

Step 3: Cross-validate and tune different specifications to find optimal solution
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CROSS-VALIDATION
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https://scikit-learn.org/stable/modules/cross_validation.html
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FINAL EVALUATION
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How well does the classifier compare to gold standard data? 
Example: Sentiment Analysis 
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FINAL EVALUATION
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How well does the classifier compare to gold standard data? 

Accuracy:  – how many predictions are correct (reasonable if labels 

are balanced!) 

Precision:  – how many positive predictions are correct 

Recall/Sensitivity:  – how many actual positives are predicted properly 

F1-score:  – harmonic mean of precision and recall 

TP + FN
TP + FP + FP + FN

TP
TP + FP

TP
TP + FN

2 ×
Precision × Recall
Precision + Recall
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TOPIC MODELING’S VALUE FOR SOCIAL SCIENTISTS 
(DIMAGGIO ET AL. 2013)
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A good approach for distance-reading should fulfill four 
requirements 
− explicitness – others should be able to replicate it 
− automation – as data sets become larger 
− inductive – shall not rely on researcher’s priors too much 
− take into account context – terms can mean different things in 

different contexts (relationality of meaning)
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TOPIC MODELING’S VALUE FOR SOCIAL SCIENTISTS
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Topic models 
− organize documents into topics based on their content, i.e., the words they 

contain 
− organize terms into topics based on their co-appearance 

− documents are a mixture of topics 
− topics are a mixture of words 
− words can appear in multiple topics

Felix Lennert, M.Sc. 
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TOPIC MODELING’S VALUE FOR SOCIAL SCIENTISTS 
(DIMAGGIO ET AL. 2013)
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A good approach for distance-reading should fulfill 
four requirements 
− explicitness – others should be able to replicate it 
− automation – as data sets become larger 
− inductive – shall not rely on researcher’s priors 

too much 
− take into account context – terms can mean 

different things in different contexts (relationality 
of meaning)

Felix Lennert, M.Sc. 

⇨ parameters are explicit 

⇨ computer does the work 

⇨ unsupervised 

⇨ words can belong to 
different topic
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Blei 2012, p. 78
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Blei 2012, p. 79
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

Topic models assume the following data generation process 
− author decides on length of text 
− author decides on topics  
− author draws words from vocabulary of topics
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

Example: 5 sentences, 2 topics  

− I like to eat broccoli and bananas. 
− I ate a banana and spinach smoothie for breakfast. 
− Chinchillas and kittens are cute. 
− My sister adopted a kitten yesterday. 
− Look at this cute hamster munching on a piece of broccoli.
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

Example: 5 sentences, 2 topics  

− I like to eat broccoli and bananas. ⇨ 100% food 
− I ate a banana and spinach smoothie for breakfast. ⇨ 100% food 
− Hamsters and kittens are cute. ⇨ 100% adorable animals 
− My sister adopted a kitten yesterday. ⇨ 100% adorable animals 
− Look at this cute hamster munching on a piece of broccoli. ⇨ 50% adorable animals, 

50% food 

⇨ IDEA OF LDA: topics are mixture of words, documents mixture of topics (and of 
words)
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

Example: 5 sentences, 2 topics  

− I like to eat broccoli and bananas. ⇨ 100% food 
− I ate a banana and spinach smoothie for breakfast. ⇨ 100% food 
− Hamsters and kittens are cute. ⇨ 100% adorable animals 
− My sister adopted a kitten yesterday. ⇨ 100% adorable animals 
− Look at this cute hamster munching on a piece of broccoli. ⇨ 50% adorable 

animals, 50% food 

Problem: For the computer, all the words look the same
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

− assign a topic t at random to each word w in each document d  
⇨ number of topics (k) is chosen before 

− go through each word w in each document d 
− assume that all the other assigned topics (to the words) are correct 
− compute = the proportion of words w in document d that are 

currently assigned to topic t 
− compute = the proportion of w being assigned to t (over all 

documents) 
− new topic distribution for w:   
− …repeat until a steady state is achieved

p(t |d)

p(w | t)

p(t |d) × p(w | t)
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

− assign a topic t at random to each word w in each document d 
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broccoli banana(s) munching hamster kitten spinach smoothie cute

S 1 1 2

S 2 2 1 1

S 3 2 1 2

S 4 2

S 5 2 2 2

S …

assign a topic t at random to each word w in each document d 
here: k=2 
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

LDA takes as input the documents and the assumed number of topics  
It aims to learn the proportion  of each topic t in a document  

− Learning process: 
− go through each word w in each document d 
− assume that all the other assigned topics (to the words) are correct 
− compute p(topic t | document d) = the proportion of words in document d that are 

currently assigned to topic t (⇨ if a word appears in a document, it is likely to be of the 
same topic) 

− compute p(word w | topic t) = the proportion of w being assigned to t (over all 
documents) 

− new topic distribution for w: p(topic t | document d) * p(word w | topic t) 
− …repeat until a steady state is achieved

α
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broccoli banana(s) munching hamster kitten spinach smoothie cute

S 1 p(T=2|S 1)=1 2

S 2 2 1 1

S 3 2 1 2

S 4 2

S 5 2 2 2

S …

− go through each word w in each document d 
− assume that all the other assigned topics (to the words) are correct 
− compute = the proportion of words w in document d that are 

currently assigned to topic t
p(t |d)
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

− compute  = the proportion of w being assigned to t (over all 
documents) 

⇨  

⇨ 

p(w | t)

p(w = broccoli | t = 1) = 0

p(w = broccoli | t = 2) = 1
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

− go through each word w in each document d 
− assume that all the other assigned topics (to the words) are correct 
− compute = the proportion of words w in document d that are 

currently assigned to topic t 
− compute = the proportion of w being assigned to t (over all 

documents) 
− new topic distribution for w:   
⇨  

⇨ 

p(t |d)

p(w | t)

p(t |d) × p(w | t)
p(broccoli, t = 1) = 0 × 0 = 0

p(broccoli, t = 2) = p(t = 2 |d = s1) × p(w = broccoli | t = 2) = 1
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STYLIZED APPROACH (TAKEN FROM CHEN 2013)

− go through each word w in each document d 
− assume that all the other assigned topics (to the words) are correct 
− compute = the proportion of words w in document d that are 

currently assigned to topic t 
− compute = the proportion of w being assigned to t (over all 

documents) 
− new topic distribution for w:   

− …repeat until a steady state is achieved

p(t |d)

p(w | t)

p(t |d) × p(w | t)
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STYLIZED APPROACH

In the end, the topic model will give us two coefficients: 
−  (gamma), document-topic probability: the proportion of words in a 

document coming from a topic 
−  (beta), term-topic probability: the probability of a term coming from a topic

γ

β
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UNSUPERVISED LEARNING WITH TEXT – THE PROCESS
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− Choose a set of documents (corpus) and a number of topics k 
⇨ usually k is not known a priori – estimation by training multiple models and 
comparing different measures 

− Preprocess the documents 
⇨ e.g., tokenization (also: bi- and trigrams), stemming/lemmatization, remove 

frequent words, etc. – for ramifications, see Denny and Spirling (2018) 
− Learn topic model 
− Make sense of topics
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CHOICE OF CORPUS
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− Not as important here, model searches for structure 
− Documents should have a certain length (since model assumes documents to 

be a mixture of topics) 
⇨ for short texts, e.g., Tweets, specific “single-membership” models exist
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CHOOSING K
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− “One of the most difficult questions in Unsupervised Learning” (Grimmer and 
Stewart 2013: 19) 

− No straightforward thing to do 
− Solution: train many models and calculate evaluation scores for them (using 

R package “ldatuning”, or “stm::searchK()”) 
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MAKING SENSE OF TOPICS

46

− LDA gives you two values:  
− the probability that a word belongs to a topic,  
− the probability that a document belongs to a topic,  

− Goal: to give topics labels

β
γ

Felix Lennert, M.Sc. 

Grimmer, Roberts, and Stewart 2022: 160
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MAKING SENSE OF TOPICS
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− Goal: to give topics labels 
− Look at most prevalent terms contained in topics 

− apophenia (seeing patterns in random sets) 
− confirmation bias (seeing what you want to see) 

− Read documents that consist mainly of words drawn from topics  
− tedious  

⇨ but, remember the rules of text mining: VALIDATE VALIDATE VALIDATE 
⇨ in this case: ensure that your topics constitute what you think they do
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MAKING SENSE OF TOPICS
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Unsupervised ML | The process 
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EXTENSION: STRUCTURAL TOPIC MODELS
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LDA comes with a bunch of limitations: 

− Only takes text into account (no document covariates) – topics are learned 
taking covariates into account 

− Topic-word distribution is stationary, cannot vary between documents (Republicans 
and Democrats may talk about the same topics but use different terms) – different 
documents may contain the same topic but use different lingo 

− Topics are treated as independent from each other – topics are allowed to be 
correlated 

⇨ Structural Topic Models mitigate these shortcomings
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EXTENSION: SEEDED TOPIC MODELS
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LDA comes with a bunch of limitations: 

− Topics may actually be known in the beginning  
− However: if LDA doesn’t find the topic, this doesn’t work 
− Solution: define (“seed”) topics before – assign certain terms to topics 

⇨ Seeded topic model
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RESULT
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− Finally, you have added a new label to your document, namely its topic 
distribution 

− You can use this label as a dependent as well as an independent variable for 
further inference
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REMARKS

52

These methods are great and robust, but (unfortunately) will be outdated in the 
near future: transfer learning using large language models is going to replace 
them – for more on this, wait for TAD IV 
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